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The solution is presented for the three-dimensional problem of the theory of 
elasticity of transversely isotropic elastic bodies, where the elastic character- 
istics vary arbitrarily along the axis of ~mme~ of the elastic properies of the 
medium. The solution is written in orthogonal curvilinear cylindrical coordi- 
nates and is represented by using two independent functions. The question of 
separation of the boundary conditions in the plane of isotropy is examined. 

A number of investigations, which examine primarily the equilibrium of 
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isotropic bodies with an exponential law of variation of the elastic modulus and 
a constant Poisson’s ratio, is devoted to the solution of two-dimensional prob- 

lems of the theory of elasticity of inhomogeneous bodies. One of the firstworks 

in this area is apparently [ 11. Under analogous assumptions, the general solu- 

tion of’the three-dimensional problem of the theory of elasticity of transversely 

isotropic bodies and isotropic bodies adapted for the analysis of laminar media 
has been constructed in [2]. It is also represented by using two independent 
functions for which the conditions of the boundaries of the layers are separated. 

The dependences obtained are used in [2] for the general solution of the equi- 

librium problem for half-spaces comprised of layers which are not homogeneous 
with depth under the effect of surface forces. A solution of the three-dimen- 

sional problem of the theory of elasticity of an inhomogeneous isotropic body, 
constructed by a scheme similar to that elucidated, but without the constraints 
imposed on the elastic characteristics and taking account of the volume forces 
is presented in [3]. 

Following Gutman [4], let us represent the required solution as the sum of COmpOnentS 

of the first and second kinds. In the solution of the first kind, defined by the function II, 
(1) : vanishes, while in the solution of the second kind defined by the function II’, the de- 

flection V, the stress oz and the volume expansion vanish. We have 

(2) 

Here a, fi are curvilinear coordinates in the isotropy plane, the z -axis coincides with 
the axis of symmetry of the medium, H,, III, are Lam6 coefficients, fill, &, t&s are 
the reduced elastic constants introduced by S. G. Lekhnitskii, E, v are the elastic mo- 
dulus and Poisson’s ratio in the plane of anisotropy, E, is the elastic modulus in the z - 

direction, v1 is the Poisson’s ratio taking account of the influence eZ on the strain in 
the isotropy plane, and G, is the shear modulus in a plane perpendicular to the plane of 
isotropy. 

The functions II and v satisfy the equations 

8%3~*~ + @{& [(2p1, + -g-) g] + IT *} + -&(@,, -g) = 0 (3) 
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Further, only the strains defined by differentiation in the plane of isotropy by means 
of the formulas 

1 au, Up dH, 
e =H,xr+H,H27@- CL e,+eB=DF 

are expressed analytically. 
The stresses uh, up, z,a and the strain ez are calculated by means of Hooke’s law 

formulas which are converted into 

0, = allec( + a,,ep + alsuz, ap = a,,e, + allep + CWJz 

e, = usI te, + ep) + a33(Jz 

E VlE -- 
alt- 1_-y2 f a12=mlB f-h=-Elgl= E,~~__~Y) 

1 2v,=E 
-- 

a33 - E, I- 
(1 --Y)& 1 

Let us show that the solutions of the first and second kinds can be examined indepen- 
dently for a layer bounded by isotropy planes. The same refers to a multilayered half- 
space. 

The equations to determine the functions II and ?y are separated. The boundary va? 
lues of the functions Q, and z (the first static problem) or of w and F (the second sta- 
tic problem) are used in the solution of the first kind, and boundary values of the func- 
tion s (the first statics problem) or L (the second statics problem) in the solution of 
the second kind. 

To separate the solutions completely it is required to determine the boundary values 
of the function z and s: by the quantities ror go or the quantities F,, Lo. For example, 
we have oz = p, T,* = t,, zpz = t2 at z = h for the first statics problem. 

In conformity with (2), let us assume 

1 at, I as, 
tl=H,-g+~ag, t2+$_+-~ 

from which it follows 
1 

Daro= H,H2 1 (4) 

1 
Dss, =f - HAHN LHt ag ( 11) - & WzCd 1 

The boundary values of the functions F and L (the second statics problem) are writ- 
ten in an analogous manner. 

The conditions for continuity of the stresses r,, zpz and displacement ucL, up in the 
computation of a laminar half-space are equivalent to the continuity conditions for the 
functions F and z (solution of the first kind) or S, L (solution of the second kind). 

It also follows from the above that the problem of analyzing an inhomogene~ layer 
or half-space is partitioned in two independent stages, where the invariant functions a,, 
W, z, F, s, L are determined in the first stage. An analogy is noted between the first stage 
of the solution of two-dimensional (plane and axisymmetric) problems about the equi- 
librium of an inhomogeneous half-space and the three-dimensional problem written in 
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an arbitrary orthogonal curvilinear coordinate system. This analogy is also detected be- 
tween solutions of axisymmetric problems for a continuous layer (half-space) and a layer 

(half-space) with an absolutely stiff and smooth cylindrical inclusion. 
In fact, the kernels of the integral transforms used in solving the problems mentioned 

satisfy the equation D2f = -y2f (5) 

It follows from (2), (4),(5) that the algorithms to determine the transformant of the in- 

variant functions a,, ‘t, w, F agree in the cases mentioned. Therefore, the most tedious 

part of the solution can be used in examining a number of problems. The same refers 

to the solutions of the second kind represented in Cartesian and curvilinear coordinates. 

The inversion formulas, expressions for the load transformant and results of a compu- 

tation are understandably distinct for analogous problems. 
The order taken to analyze inhomogeneous bodies is also used in a variant of the finite 

strip method (interpolation method) proposed in [5, 61 for the consideration of the multi- 

layered bodies, and contributes to shortening the computational operations. 
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The stability is studied of the neutral equilibrium of a system, in a linear appro- 

ximation, which has two resonances locked at two frequencies, each of which 
does not cause instability separately in a second approximation. It is shown 
that in contrast to the case of independent resonances and those locked at one 
frequency, stability can be lost (in the same order). 


